Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги)

266). Когда под сосудом разводили огонь, пар по трубкам попадал в шар и по соплам вырывался наружу. Древние не знали, что такое пар, они думали, что вода при нагревании переходит в горячий воздух. Сам Аристотель об этом говорил, поэтому и Герон был уверен, что из сопел вырывается горячий ветер.

Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги) //— Рис. 266. «Эолипил» – турбина Герона Александрийского —//
Как и положено реактивной турбине, она, шипя и свистя, начинала быстро вращаться. Однако турбина не выполняла никакой полезной работы, хотя вполне могла бы это делать. По этому же принципу сейчас работают центробежные маслоочистители на автомобилях, только вместо пара там из сопел вырывается масло.
Лишь в XVII в. эолипил Герона или его аналог нашел практическое применение. В 1629 г. римский архитектор Дж. Бранка опубликовал книгу «Различные машины», где рассказал о своем изобретении. Тот же резервуар с водой в виде человеческой головы, та же турбина (только не реактивная, а активная с лопатками), с приводом на тяжелые песты для дробления руды (рис. 267).

Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги) //— Рис. 267. Паровая ступа Дж. Бранка: 1 – котел; 2 – сопло; 3 – турбинное колесо —//
Первое применение паровой машины в качестве водяного насоса опять же принадлежит Герону Александрийскому (рис. 268).

Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги) //— Рис. 268. Тепловой двигатель-насос Герона Александрийского: —//
1 – резервуар; 2, 6 – трубки; 3 – шар; 4 – сифонная трубка; 5 – сосуд

Устройство имеет резервуар 1, заполненный водой. На крыше резервуара укреплены шар 3 и сосуд 5. Верхняя часть полости шара 3 сообщена с водяным объемом резервуара 1 трубкой 2. Водяной объем шара 3 соединен с сосудом 5 сифонной трубкой 4. Устройство устанавливается на месте, открытом солнечным лучам. В солнечную погоду шар 3 нагревается, и давление пара в нем увеличивается. Под давлением пара вода из шара 3 поступает в трубку 4. После заполнения трубки 4 вода начинает поступать в сосуд 5. Перекачивание воды происходит как под действием избыточного давления в шаре 3, так и вследствие сифонного эффекта, т. е. сосуд 5 заполняется водой и в пасмурную погоду до тех пор, пока уровни в вазе и шаре не сравняются. Избыток воды из сосуда 5 сбрасывается в резервуар 1 по трубке 6. Ночью шар 3 охлаждается, и пар, заполняющий верхнюю полость шара, конденсируется. При этом в шаре образуется вакуум, т. е. давление падает ниже атмосферного. Под действием образовавшейся разности давлений по трубке 2 в шар 3 начинает поступать вода из резервуара 1. Так происходит заполнение шара 3 перед последующим дневным циклом.
Напоминает описанный ранее «вечный двигатель» для поливки огурцов. Не хватает только клапанов и теплицы с огурцами. Обидно даже, как этот Герон сумел всех опередить!
Но практического применения все эти машины в античном мире не нашли. Была дешевая сила животных и рабов, и машины тогда были лишь в качестве игрушек.
Первые промышленные паровые машины появились в Англии в виде водяных насосов для откачки воды из шахт и рудников. Раньше эту работу выполняли животные на ступальных колесах. На некоторых рудниках число лошадей, работающих на откачке воды, достигало 500. Угледобывающая промышленность Англии буквально гибла от непомерной стоимости откачки воды из шахт. Вот тут-то и появилась необходимость в тепловой машине, которая, потребляя имеющиеся в избытке уголь и воду, могла бы заменить лошадей.

Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги)
И первой паровой машиной, откачивавшей воду из рудников, была «огненная машина» английского военного инженера Томаса Севери (1650—1715). Томас Севери получил патент на свою машину в 1698 г. Эта машина (рис. 269) имела один сосуд 1, верхняя часть которого соединялась трубкой 7 с котлом 2. Котел имел предохранительный клапан 4 и трубку 3 для заполнения котла водой. К сосуду 1 присоединялись также всасывающая трубка 12 с клапаном 11 и нагнетающая трубка 6 с клапаном 10. Машина была снабжена баком 8 с краном 9. При открытии крана 5 пар из котла 2 подавался в сосуд 1, выгоняя оттуда воду по трубке 6. Клапан 10 при этом открыт, а клапан 11 закрыт. В конце нагнетания кран 5 закрывался, и через кран 9 в сосуд 1 подавалась холодная вода. Пар в сосуде 1 охлаждался, конденсировался, и давление падало, засасывая туда воду по трубке 12. Клапан 11 при этом открывался, а клапан 10 закрывался. Так как необходимо было периодически поворачивать оба крана – 5 и 9, их соединили пластиной.
В машине Севери, как и у Герона, использовались как избыточное давление пара, так и вакуум, возникающий при конденсации пара.

Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги) //— Рис. 270. Первая поршневая атмосферная машина Т. Ньюкомена: —//
1 – тяга; 2 – груз; 3; 8 – цепи; 4; 6 – плечи балансира; 5 – балансир; 7 – бачок; 9 – поршень; 10 – цилиндр; 11; 13 – краны; 12 – котел

Но настоящий переворот в технике принесли лишь поршневые паровые машины. Среди их создателей первым был англичанин Томас Ньюкомен (1663—1729), кузнец по профессии, инженер-самоучка. Он сам устанавливал машины Севери на рудниках и хорошо знал об их недостатках – невозможности откачки воды из глубоких шахт.
В машине Ньюкомена мощностью 7,5 кВт, построенной в 1725 г., установленные в шахте насосы приводились длинной тягой 1 (рис. 270), подвешенной вместе с грузом 2 с помощью цепи 3 на одном из плеч 4 балансира 5. Другое плечо 6 балансира такой же цепью 8 было соединено с поршнем 9, установленным в вертикальном цилиндре. Пар в цилиндр 10 подавался из котла 12 с помощью крана 11. Этот кран открывали, когда поршень находился в нижнем положении. Избыточным давлением пара поршень поднимался в верхнее положение. Совершался холостой ход, тяга 1 опускалась.
В верхнем положении поршня кран 11 закрывался. Одновременно открывался кран 13, и в цилиндр впрыскивалась холодная вода из бачка 7. Пар в цилиндре конденсировался, в результате чего в нем создавался вакуум. Под действием атмосферного давления поршень опускался. Совершался рабочий ход, и тяга 1 поднималась.
Таким образом, машина Ньюкомена была скорее атмосферной, чем чисто паровой, так как рабочий ход у нее осуществлялся не давлением пара, а именно атмосферным давлением. Атмосферные машины были огромной величины при скромных мощностях. Кстати, атмосферная машина русского инженера-самоучки И. Ползунова (1728—1766), заработавшая через неделю после его смерти, тоже была громадной по размерам. Да и КПД таких машин был ничтожно мал.

Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги) //— Рис. 271. Схема работы паровой машины: а и б – прямой и обратный ход поршня —//
Первой настоящей паровой поршневой машиной (подчеркнем это, так как вообще первая паровая машина – все-таки эолипил Герона!) была машина, созданная Джеймсом Уаттом (1736—1819) в Англии в 1774 г. (рис. 271). Только в его машине именно пар своим давлением осуществлял рабочий ход поршня. Даже первая машина Уатта оказалась вдвое экономичнее машин Ньюкомена, не сравнивая уже их размеры. КПД лучших машин Уатта достигал фантастической величины в… 2,7 %! Нам эта цифра смешна, но именно машины Уатта изменили промышленную энергетику, именно они превратили XIX в. в век пара.
Но все-таки эолипилы, или паровые турбины, оказались победителями среди паровых машин. Они единственные служат и сейчас на тепловых и атомных электростанциях, мощных судах (рис. 272). Их КПД на порядок выше, чем у машин Уатта, не говоря уже о мощностях в сотни мегаватт! Хитрый грек Герон и в этом опередил всех – он открыл паровую турбину!

Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги) //— Рис. 272. Паровая турбина большой мощности —//

Отто, Дизель… Герон?
Но как бы то ни было, а подавляющее большинство современных тепловых двигателей – внутреннего сгорания. Они и на автомобилях, и на тракторах, мотоциклах, сельхозмашинах, на большинстве судов и мало ли еще где, даже на самолетах.
Как же они возникли? Делалось много безуспешных попыток создать двигатель, в котором топливо сжигалось бы не вне рабочего объема машины (цилиндров), как у паровых машин, а внутри его. Это должно было резко повысить КПД тепловой машины. Первая такая попытка принадлежит французу Лебону (1769(67) – 1804) – изобретателю светильного газа, двигатель на котором он запатентовал в 1801 г.
Но только в 1860 г. бельгийскому инженеру Ж. Ленуару (1822—1900) удалось создать работоспособный и используемый в промышленности двигатель внутреннего сгорания, тоже на светильном газе. Не удивляйтесь, но на газе, полученном нагреванием дерева без доступа воздуха (термолизом), изобретенном в 1799 г. Лебоном, работали некоторые советские грузовики 40 – 50-х гг. ХХ в.
Изготовленный Ленуаром двигатель напоминал паровую машину (рис. 273). Двигатель был с золотниковым распределителем. Один из золотников (нижний) обеспечивал поочередную подачу воздуха и газа в полости цилиндра, расположенные по разные стороны поршня. Второй золотник (верхний) служил для выпуска отработанных газов. Газ и воздух до попадания в цилиндр не сжимались и к золотнику подводились по отдельным каналам. Всасывание смеси в каждую полость происходило примерно до половины хода, после чего золотник перекрывал впускное окно, и смесь воспламенялась искрой. Давление сгоревшей смеси возрастало и действовало на поршень, производя работу расширения. После окончания расширения второй золотник соединял цилиндр с выхлопной трубой, и поршень вытеснял отработанные газы.

Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги) //— Рис. 273. Газовый двигатель Ж. Ленуара: —//
а – общий вид; б – схема: 1 – поршень; 2; 4 – золотники; 3 – цилиндр

Вращался двигатель Ленуара с частотой порядка 100—150 оборотов в минуту, мощность его была около 0,5 кВт. Но КПД был всего 3 %, т. е. меньше, чем у тогдашних паровых машин. Но все-таки таких двигателей построили во Франции и Англии около 300, и на выставке 1864 г. двигателю Ленуара было присуждено первое место.
Тем не менее после изобретения двигателя Н. Отто и Э. Лангена и демонстрации его на парижской выставке 1867 г., двигатель Лену-ара был обречен. КПД нового двигателя был в 5 раз больше и достигал 15 % – цифры в то время неслыханной. И хотя эти, а также последующие двигатели Н. Отто строились на мощности до 1 000 лошадиных сил, они работали опять же на газе – светильном, доменном и др., т. е. им не было места на автомобилях.
Но главное, что совершил Н. Отто в двигателестроении, – это разработка в 1877 г. четырехтактного цикла действия двигателей: всасывание, сжатие, расширение (рабочий ход), выхлоп, по которому работает большинство двигателей и сейчас.
Применение двигателей внутреннего сгорания на транспорте могло быть реальным только при жидком топливе, которое можно компактно хранить в баках. Самым удобным, хотя и опасным видом топлива оказался бензин – он легко испарялся в воздухе и образовывал горючие смеси. Первый бензиновый двигатель был построен в 1884 г. русским инженером И. С. Костовичем для дирижабля. Дирижабль, к сожалению, сгорел, а двигатель мощностью около 50 лошадиных сил остался цел и невредим, так как хранился отдельно от дирижабля. Никто его так и не использовал. Надо же – построить двигатель специально для дирижабля, как будто автомобилей и не существовало! И судьба двигателя, возможно, оказалась бы счастливее…
Предком современных бензиновых двигателей считается двигатель 1885 г. немецких инженеров Г. Даймлера (1834—1900) и В. Майбаха (1846—1929), развивавший мощность 0,5 лошадиной силы при объеме цилиндра 0,25 л и частоте вращения 200 оборотов в минуту.
Изобретатели поставили его на деревянный велосипед и получили первый в мире мотоцикл, тоже, разумеется, деревянный. А так как двигатель не мог эффективно работать без карбюратора, приготовляющего рабочую смесь (о карбюраторе мы уже говорили выше), то годом создания эффективного бензинового двигателя (рис. 274) нужно считать год патентования В. Майбахом карбюратора – 1893-й. Частота вращения двигателей постепенно росла и в 1914 г. составила 2 000 оборотов в минуту (сейчас она примерно в 3 раза выше).

Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги) //— Рис. 274. Карбюраторный двигатель внутреннего сгорания с зажиганием от магнетоэлектрогенератора высокого напряжения: —//
1 – привод на маслонасос; 2 – распределительный вал; 3 – водяная помпа; 4 – поршень; 5 – запальная свеча; 6 – радиатор; 7 – топливный бак; 8 – карбюратор; 9 – выхлопная труба; 10 – магнето (генератор высокого напряжения)

Но… (Опять это «но»! Бензиновые двигатели завоевывали мир, они были почти на всех автомобилях, какое может быть «но»?) Но они имели все-таки небольшой КПД, который принципиально нельзя было повысить. Дело в том, что когда начинали повышать степень сжатия, т. е. все больше и больше сжимать рабочую смесь в цилиндрах именно для повышения КПД, смесь паров бензина с воздухом не выдерживала нагревания и взрывалась совсем не тогда, когда ей было положено. Почти как в пневматической зажигалке древних народов, о которой мы уже говорили…
Вот тут-то самый раз рассказать о дизельных двигателях, лишенных этого недостатка. Первый патент автора дизельных двигателей немецкого инженера Р. Дизеля относится к 1892 г. Суть работы этого двигателя ясна из формулы изобретения к этому патенту (приводимой здесь в сокращении): «Способ работы для двигателей внутреннего сгорания такого рода, что в цилиндре при помощи поршня сжимается чистый воздух… так, что достигаемая при этом температура значительно превышает температуру воспламенения применяемого горючего вещества, после этого производится постепенный впуск топлива, и вследствие этого его сгорание…»
Стало быть, чистый воздух можно сжимать до давлений, в несколько раз превышающих давления сжатия в бензиновых двигателях, без боязни того, что воздух, чего доброго, взорвется. Это давление доходит до 30—40 МПа, и температура воздуха при этом повышается до 500—700 °С. Впрыснутая особыми насосами и форсунками в этот сжатый и раскаленный воздух солярка тотчас же загорается и совершает работу по продвижению поршня с гораздо более высоким КПД, чем в бензиновых двигателях. Да и не только солярка, а любое топливо при такой температуре загорится, даже угольный порошок, который поначалу собирался всыпать в цилиндр сам Дизель.

Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги) //— Рис. 275. Дизельный двигатель: —//
1 – поршень; 2 – топливный насос; 3 – топливный бак; 4 – воздушный фильтр; 5 – клапаны; 6 – выхлопной патрубок; 7 – распределительный вал; 8 – привод масло-насоса; 9 – водяная помпа; 10 – радиатор

Как бы то ни было, КПД дизельного двигателя (рис. 275) вырос как минимум в 1,5 раза по сравнению с карбюраторными двигателями, да и само дизельное топливо было дешевле бензина. Вот почему дизельные двигатели успешно вытесняют бензиновые, прежде всего на мощных грузовых автомобилях. Во время Великой Отечественной войны с Германией наши танки оснащались именно дизельными двигателями, что во многом определяло их преимущества по сравнению с немецкими бензиновыми. Вот как дизель – немецкое изобретение – помог выиграть нам войну с Германией.
В настоящее время в связи с заменой карбюратора системами непосредственного впрыска топлива позиции дизельного и бензинового двигателей сближаются, что всем идет на пользу.
И наконец, самый «молодой» двигатель внутреннего сгорания, к тому же самый малогабаритный и легкий, самый мощный, самый перспективный. Такие двигатели используют как на вертолетах и самолетах, так и на электростанциях для выработки электроэнергии из газа. Этот двигатель называется газотурбинным, или газовой турбиной, и он, как говорится, уже на подножке автомобиля. Пока им оснащают опытные конструкции, но уже скоро он будет стоять на грузовых автомобилях и автобусах, а также, возможно, на легковых автомобилях.

Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги) //— Рис. 276. Схема газовой турбины: —//
1 – компрессор; 2 – регенератор; 3 – камера сгорания; 4 – форсунка; 5 – топливный насос; 6 – турбина

Газовая турбина – роторный двигатель. На лопатках его ротора энергия газа преобразуется в механическую работу (рис. 276). В компрессор 1 турбины поступает воздух и сжимается в нем за счет части работы, производимой турбиной. Сжатый воздух идет в регенератор (теплообменник) 2, где немного подогревается отработавшими в турбине горячими газами. Затем он попадает по трубе в полость между двойными стенками камеры сгорания 3. Здесь он подогревается еще сильнее и направляется в камеру сгорания вместе с топливом, которое насос 5 подает через форсунку 4. В камере сгорания образуются газы с очень высокой температурой и давлением. Через сопло они устремляются на рабочее колесо 6 турбины. Совершив работу, газы покидают установку через регенератор, нагревая поступающий из компрессора воздух. Запускается такая турбина пусковым электродвигателем – стартером.
Стать автомобильным двигателем уже сейчас газовой турбине мешают две причины: неэкономичность маломощных двигателей (а автомобильный двигатель по сравнению с электростанцией – лилипут), а также… сильный шум при работе. Первый недостаток уже преодолен разработкой особых жаропрочных керамических материалов для турбин, что сделало КПД газотурбинного двигателя не ниже дизельного, а второй успешно преодолевается специальными акустическими мерами.
И здесь первым оказался Герон – газовая турбина тоже ведь эолипил, хотя и газовый!

Как начинался автомобиль?
А что же можно называть автомобилем? Хорошо, колесница – это не автомобиль, так как экипаж тащит лошадь. А если лошадь поставить на шасси и заставить через трансмиссию приводить колеса (рис. 277), то будет ли тогда колесница автомобилем?

Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги) //— Рис. 277. Экипаж, приводимый в движение лошадью, толкающей назад бесконечную дорожку, приводящую ведущие колеса —//
Многие (в том числе и автор) считают, что это уже автомобиль. Автомобилем можно называть такой экипаж, который едет с помощью ведущих колес, содержит двигатель (в том числе и живой), имеет привод от двигателя к ведущим колесам и меняет направление движения манипуляцией с колесами. То есть его маршрут определяют не рельсы – направляющие, а непосредственно водитель, управляющий колесами – их поворотом, торможением и т. д.
Тогда автомобилю, как и двигателю, тоже около 2 тысяч лет, даже больше. Например, мускулоход Деметрия Фалернского, датированный 308 г. до н. э. (рис. 278), имел все необходимое, чтобы признать его автомобилем, а именно: двигатель-человек на ступальном колесе, привод от ступального колеса к ведущим задним колесам, а также управляемое переднее колесо. Дизайн экипажа в виде улитки вполне соответствовал скорости движения.

Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги) //— Рис. 278. Мускулоход-улитка Деметрия Фалернского —//
Доктор философии Джовани да Фонтана создал мусколоход, чертеж которого сохранился до сих пор (рис. 279). Внешне он напоминает маленький городской автомобиль, этакий сити-кар XV века, так как построен он был в 1420 г.

Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги) //— Рис. 279. «Сити-Кар» XV в. Джовани да Фонтана —//
А вот парализованный часовщик из города Альтдорфа Стефан Фарфлер в 1680 г. изготовил для себя инвалидную коляску с приводом единственного колеса от рукоятей с зубчатой передачей (рис. 280). Так что «самобеглая коляска» русского крестьянина Леонтия Шамшуренкова, построенная в 1752 г. и приводимая в движение двумя спрятанными в ней людьми, отнюдь не являлась первым автомобилем, за который ее многие годы выдавали.

Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги) //— Рис. 280. Инвалидная коляска часовщика С. Фарфлера —//
Но самокатка знаменитого И. П. Кулибина, имевшая, помимо мускульного привода, еще и маховичный, своеобразную коробку передач и рекуперативный пружинный тормоз (рис. 281), была действительно чудом, обогнавшим время.

Читать бесплатно книгу удивительная физика, гулиа нурбей (23-я страница книги) //— Рис. 281. Самокатка И. П. Кулибина —//
В наше время мусколоходы блестяще представлены велосипедами и веломобилями, причем последним предсказывают большое будущее.
Строились автомобили и на накопленной механической энергии. И если об автомобиле с приводом от маховика мы уже говорили, то были и пружинные автомобили, о которых известно из истории транспорта. Пружиномобиль с мускульным подзаводом для выездов королей оказался буквально безделушкой по сравнению с заводным пружинным омнибусом, построенном в США в городе Новом Орлеане в 1870 г.

Источник: http://bookz.ru/authors/gulia-nurbei/udivitel_196/page-23-udivitel_196.html

Оставить комментарий